Ethical and legal issues
Home » AI » General exposition » Transparency » Ethical and legal issues

This requirement embeds three main different principles: traceability, explainability and communication.[1]


The datasets and the processes that yield the AI system’s decision, including those of data gathering and data labelling as well as the algorithms used, should be documented to the best possible standard to allow for traceability and an increase in transparency. This also applies to the decisions made by the AI system. This enables identification of the reasons why an AI-decision was erroneous which, in turn, could help prevent future mistakes. Traceability facilitates auditability as well as explainability.


Thisconcerns the ability to explain both the technical processes of an AI system and the related human decisions (e.g. application areas of a system). Technical explainability requires that the decisions made by an AI system can be understood and traced by human beings. Moreover, trade-offs might have to be made between enhancing a system’s explainability (which may reduce its accuracy) or increasing its accuracy (at the cost of explainability). Whenever an AI system has a significant impact on people’s lives, it should be possible to demand a suitable explanation of the AI system’s decision-making process. Such explanation should be timely and adapted to the expertise of the stakeholder concerned (e.g. layperson, regulator or researcher). In addition, explanations of the degree to which an AI system influences and shapes the organizational decision-making process, design choices of the system, and the rationale for deploying it, should be available (hence ensuring business model transparency).


AI systems should not represent themselves as humans to users; humans have the right to be informed that they are interacting with an AI system. This entails that AI systems must be identifiable as such. In addition, the option to decide against this interaction in favor of human interaction should be provided where needed to ensure compliance with fundamental rights. Beyond this, the AI system’s capabilities and limitations should be communicated to AI practitioners or end-users in a manner appropriate to the use case at hand. This could encompass communication of the AI system’s level of accuracy, as well as its limitations.




Skip to content